
LHCbDIRAC Documentation
Release v7

LHCbDIRAC Project.

Mar 27, 2019

Contents

1 Developers Guide 3
1.1 Guide for developing LHCbDIRAC (and DIRAC, for LHCb developers) 3
1.2 Developing DIRAC and LHCbDIRAC . 5
1.3 HOW TOs . 6
1.4 Browsing the code running in production . 6
1.5 I developed something, I want it in the next release . 6
1.6 Asking for a LHCbDIRAC patch . 6

2 Administrator Guide 7
2.1 LHCbDIRAC Releases . 7
2.2 Renewal of certificate for ONLINE machine . 15
2.3 ONLINE steps . 15
2.4 Data distribution . 16
2.5 RAW files processing and distribution . 17
2.6 Productions flushing . 18

3 Certification 21
3.1 LHCbDIRAC Certification (development) Releases . 21
3.2 The certification process . 25
3.3 Acceptance test steps . 28

4 Indices and tables 45

i

ii

LHCbDIRAC Documentation, Release v7

The LHCbDIRAC project is the LHCb Grid solution. LHCbDIRAC is DIRAC extension.

DIRAC forms a layer between a particular community and various compute resources to allow optimized, transparent
and reliable usage. LHCbDIRAC specializes DIRAC for LHCb.

• DIRAC documentation: http://dirac.readthedocs.io/en/latest/index.html

• DIRAC hosted repository: https://github.com/DIRACGrid

LHCbDIRAC is the LHCb extension to DIRAC:

• LHCbDIRAC documentation: http://lhcb-dirac.readthedocs.io/en/latest/index.html

• LHCbDIRAC hosted repository: https://gitlab.cern.ch/lhcb-dirac

Contents 1

https://gitlab.cern.ch/lhcb-dirac
https://gitlab.cern.ch/lhcb-dirac
http://dirac.readthedocs.io/en/latest/index.html
https://github.com/DIRACGrid
http://lhcb-dirac.readthedocs.io/en/latest/index.html
https://gitlab.cern.ch/lhcb-dirac

LHCbDIRAC Documentation, Release v7

2 Contents

CHAPTER 1

Developers Guide

1.1 Guide for developing LHCbDIRAC (and DIRAC, for LHCb develop-
ers)

A short, but hopefully comprehensive guide on developing in LHCbDIRAC, referencing DIRAC development model.
For what are DIRAC and LHCbDIRAC doing, look elsewhere.

LHCbDIRAC is a DIRAC extension. This means that LHCbDIRAC cannot leave independently from DIRAC. There
are a number of DIRAC extensions, maintained by various communities worldwide, and LHCbDIRAC is the most
important out there, and the one that receives the most support by DIRAC itself. But it also means that DIRAC
and LHCbDIRAC (as all the other DIRAC extensions) have different release cycles and versioning, adopts different
version control systems, use different tracking systems, and that the code conventions may slightly differ.

DIRAC can also have other extensions, independent from a VO. All these are hosted at github.

1.1.1 Pre-requisites

Within this section we just look at what is necessary to know before looking at the code.

Releases

Naming

Both DIRAC and LHCbDIRAC follow the same naming conventions for releases, inherithed by the LHCb convention:

vMrNpt

where:

• M stands for major version, or simply version

• N stands for minor version, or simply release

3

http://en.wikipedia.org/wiki/Software_release_life_cycle
http://en.wikipedia.org/wiki/Software_versioning
http://en.wikipedia.org/wiki/Version_control_system
http://en.wikipedia.org/wiki/Issue_tracking_system
http://en.wikipedia.org/wiki/Code_conventions
https://github.com/DIRACGrid

LHCbDIRAC Documentation, Release v7

• t stands for patch version, or simply patch

with a special pre-release naming convention: -preX.

This will be clear with some examples:

• v6r2p0 is the version 6, release 2, patch 0

• v7r5p13 is the version 7, release 5, patch 13

• v8r1-pre2 is the second pre-release of version 8, release 1

There are no pre-releases for patches.

Release cycle

When developing LHCbDIRAC, we need to consider that every LHCbDIRAC is developed on top of a DIRAC release.
The following picture explaines the model.

So, for example. there might be 2 or more LHCbDIRAC releases based on top of the same DIRAC release. Every
LHCbDIRAC developers has to know which release of DIRAC its development is for. The major version of both
DIRAC and LHCbDIRAC changes rarely, let’s say evry 2 years. The minor version changes more frequently in
LHCbDIRAC with respect to DIRAC, but there is no strict advancement scheduling for none of the 2.

A pre-release is a release candidate that goes through a certification process.

Version Control

LHCbDIRAC version control is based on GIT. GIT is a very popular distributed revision control system. The reader
is supposed to be familiar with the way such systems work. The code is hosted in the CERN GitLab.

4 Chapter 1. Developers Guide

https://gitlab.cern.ch/lhcb-dirac/

LHCbDIRAC Documentation, Release v7

Tracking systems

The tracking system used for LHCbDIRAC is jira. Jira is a fundamental tool for LHCbDIRAC, and its use is manda-
tory. Every development should be tracked there. Jira is a very powerfool tool, but requires some time to master. Few
notes/links:

• The official documentation is here. You might also be interested in watching the first ~15 minutes of this video.

• Issuing a new bug/task/story/etc. (there are many possible choices) is easy, just look at the top right of the
screen:

• Remember to put a “component” when you make a new issue

• When you make a new research in the issue navigator, you can save the search: it will become useful later

Developer tools

You are free to choose the editor or IDE you prefer. I know Emacs is a great tool, and someone can’t just leave
without it. And that also vim is great. Eclipse with pydev is another good choice. Other possibilities include PyCharm
(IntelliJIDEA) and atom

1.2 Developing DIRAC and LHCbDIRAC

Developing the code is not just about editing. You also want to “run” something, usually for testing purposes. The
DIRAC way of developing can be found here and it applies also to LHCbDIRAC. Please follow carefully especially
what’s here

In general, if you are developing LHCbDIRAC, you should consider that:

1.2. Developing DIRAC and LHCbDIRAC 5

https://its.cern.ch/jira/browse/LHCBDIRAC
https://confluence.atlassian.com/display/JIRA/JIRA+User%27s+Guide
http://www.youtube.com/watch?v=ca8n9uW3afg&feature=bf_next&list=PLD13EA4D38A021A10
http://www.vim.org/
http://www.eclipse.org/
http://pydev.org/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://atom.io/
http://dirac.readthedocs.io/en/latest/DeveloperGuide/index.html
http://dirac.readthedocs.io/en/latest/DeveloperGuide/DevelopmentEnvironment/DeveloperInstallation/index.html

LHCbDIRAC Documentation, Release v7

• everything that applies to DIRAC development, also applies to LHCbDIRAC development, so, follow carefully
the links above

• every LHCbDIRAC release has a strong dependency with a DIRAC release. See https://gitlab.cern.ch/
lhcb-dirac/LHCbDIRAC/blob/master/CONTRIBUTING.md for more info.

1.3 HOW TOs

1.4 Browsing the code running in production

If you want to browse the DIRAC (and LHCbDIRAC) code running in production you’ll first of all have to know
which version is installed. Announcements of new deployments are done via the LHCb operations eLog. The code
is also always installed in the CVMFS release area ($LHCb_release_area/DIRAC/DIRAC_vX5rYpZ/DIRAC) but you
can normally use git to switch from one to another.

1.5 I developed something, I want it in the next release

Just open a merge request to the devel branch of LHCbDirac: all the releases (minor and major) are created branching
from this branch.

1.6 Asking for a LHCbDIRAC patch

Just open a merge request to the master branch of LHCbDirac. If in a hurry, drop an e-mail to the lhcb-dirac mailing
list.

6 Chapter 1. Developers Guide

https://gitlab.cern.ch/lhcb-dirac/LHCbDIRAC/blob/master/CONTRIBUTING.md
https://gitlab.cern.ch/lhcb-dirac/LHCbDIRAC/blob/master/CONTRIBUTING.md
http://lblogbook.cern.ch/Operations/

CHAPTER 2

Administrator Guide

This page is the work in progress. See more material here soon !

2.1 LHCbDIRAC Releases

The following procedure applies fully to LHCbDIRAC production releases, like patches. For pre-releases (AKA
certification releases, there are some minor changes to consider).

2.1.1 Prerequisites

The release manager needs to:

• be aware of the LHCbDIRAC repository structure and branching as highlighted in the contribution guide.

• have forked LHCbDIRAC on GitLab as a “personal project” (called “origin” from now on)

• have cloned origin locally

• have added https://gitlab.cern.ch/lhcb-dirac/LHCbDIRAC as “upstream” repository to the local clone

• have push access to the master branch of “upstream” (being part of the project “owners”)

• have DIRAC installed

• have been grated write access to <webService>

• have “lhcb_admin” or “diracAdmin” role.

• have a Proxy

The release manager of LHCbDIRAC has the triple role of:

1. creating the release

2. making basic verifications

3. deploying it in production

7

https://gitlab.cern.ch/lhcb-dirac/LHCbDIRAC/blob/master/CONTRIBUTING.md
https://gitlab.cern.ch/lhcb-dirac/LHCbDIRAC

LHCbDIRAC Documentation, Release v7

2.1.2 1. Creating the release

Unless otherwise specified, (patch) releases of LHCbDIRAC are usually done “on top” of the latest production release
of DIRAC. The following of this guide assumes the above is true.

Creating a release of LHCbDIRAC means creating a tarball that contains the release code. This is done in 3 steps:

1. Merging “Merge Requests”

2. Propagating to the devel branch

3. Creating the release tarball, add uploading it to the LHCb web service

But before:

Pre

Verify what is the last tag of DIRAC:

it should be in this list:
git describe --tags $(git rev-list --tags --max-count=10)

A tarball containing it is should be already uploaded here

You may also look inside the .cfg file for the DIRAC release you’re looking for: it will contain an “Externals” version
number, that should also be a tarball uploaded in the same location as above.

If all the above is ok, we can start creating the LHCbDIRAC release.

Merging “Merge Requests”

Merge Requests (MR) that are targeted to the master branch and that have been approved by a reviewer are ready to
be merged

If there are no MRs, or none ready: please skip to the “update the CHANGELOG” subsection.

Otherwise, simply click the “Accept merge request” button for each of them.

Then, from the LHCbDIRAC local fork you need to update some files:

if you start from scratch otherwise skip the first 2 commands
mkdir $(date +20%y%m%d) && cd $(date +20%y%m%d)
git clone https://:@gitlab.cern.ch:8443/lhcb-dirac/LHCbDIRAC.git
git remote add upstream https://:@gitlab.cern.ch:8443/lhcb-dirac/LHCbDIRAC.git
update your "local" upstream/master branch
git fetch upstream
create a "newMaster" branch which from the upstream/master branch
git checkout -b newMaster upstream/master
determine the tag you're going to create by checking what was the last one from the
→˓following list (add 1 to the "p"):
git describe --tags $(git rev-list --tags --max-count=5)
Update the version in the __init__ file:
vim LHCbDIRAC/__init__.py
Update the version in the releases.cfg file:
vim LHCbDIRAC/releases.cfg
Update the version in the Dockerfile file:
vim container/lhcbdirac/Dockerfile
For updating the CHANGELOG, get what's changed since the last tag
t=$(git describe --abbrev=0 --tags); git --no-pager log ${t}..HEAD --no-merges --
→˓pretty=format:'* %s'; (continues on next page)

8 Chapter 2. Administrator Guide

http://lhcbproject.web.cern.ch/lhcbproject/dist/Dirac_project/installSource/
https://gitlab.cern.ch/lhcb-dirac/LHCbDIRAC/merge_requests

LHCbDIRAC Documentation, Release v7

(continued from previous page)

copy the output, add it to the CHANGELOG (please also add the DIRAC version)
vim CHANGELOG # please, remove comments like "fix" or "pylint" or "typo"...
Change the versions of the packages
vim dist-tools/projectConfig.json
git add -A && git commit -av -m "<YourNewTag>"

Time to tag and push:

make the tag
git tag -a <YourNewTag> -m <YourNewTag>
push "newMaster" to upstream/master
git push --tags upstream newMaster:master
delete your local newMaster
before change your branch use git checkout "existing branch name"
git branch -d newMaster

Remember: you can use “git status” at any point in time to make sure what’s the current status.

Propagate to the devel branch

Now, you need to make sure that what’s merged in master is propagated to the devel branch. From the local fork:

get the updates (this never hurts!)
git fetch upstream
create a "newDevel" branch which from the upstream/devel branch
git checkout -b newDevel upstream/devel
merge in newDevel the content of upstream/master
git merge upstream/master

The last operation may result in potential conflicts. If happens, you’ll need to manually update the conflicting files
(see e.g. this guide). As a general rule, prefer the master fixes to the “HEAD” (devel) fixes. Remember to add and
commit once fixed. Note: For porting the LHCbDIRAC.init.py from master to devel, we prefer the HEAD version
(only for this file!!!)

Plase fix the conflict if some files are conflicting. Do not forget to to execute the following:

git add -A && git commit -m " message"

Conflicts or not, you’ll need to push back to upstream:

push "newDevel" to upstream/devel
git push upstream newDevel:devel
delete your local newDevel
git branch -d newDevel
keep your repo up-to-date
git fetch upstream

Creating the release tarball, add uploading it to the LHCb web service

Automatic procedure

When a new git tag is pushed to the repository, a gitlab-ci job takes care of (soon testing), creating the tarball, uploading
it to the web service, and to build the docker image. You can check it in the pipeline page of the repository (https:
//gitlab.cern.ch/lhcb-dirac/LHCbDIRAC/pipelines).

2.1. LHCbDIRAC Releases 9

https://githowto.com/resolving_conflicts
https://gitlab.cern.ch/lhcb-dirac/LHCbDIRAC/pipelines
https://gitlab.cern.ch/lhcb-dirac/LHCbDIRAC/pipelines

LHCbDIRAC Documentation, Release v7

It may happen that the pipeline fails. There are various reasons for that, but normally, it is just a timeout on the runner
side, so just restart the job from the pipeline web interface. If it repeatedly fails building the tarball, try the manual
procedure described bellow to understand.

Manual procedure

This should a priori not be used anymore. If the pipeline fails, you should rather investigate why.

Login on lxplus, run

lb-run LHCbDirac/prod bash -norc

git archive --remote ssh://git@gitlab.cern.ch:7999/lhcb-dirac/LHCbDIRAC.git devel
→˓LHCbDIRAC/releases.cfg | tar -x -v -f - --transform 's|^LHCbDIRAC/||' LHCbDIRAC/
→˓releases.cfg

dirac-distribution -r v8r3p1 -l LHCb -C file:///`pwd`/releases.cfg (this may take
→˓some time)

Don’t forget to read the last line of the previous command to copy the generated files at the right place. The format is
something like:

(cd /tmp/joel/tmpxg8UuvDiracDist ; tar -cf - *.tar.gz *.md5 *.cfg) | ssh
→˓lhcbprod@lxplus.cern.ch 'cd /afs/cern.ch/lhcb/distribution/DIRAC3/tars && tar -xvf
→˓- && ls *.tar.gz > tars.list'

And just copy/paste/execute it.

If you do not have access to lhcbprod, you can use your user name.

2.1.3 2. Making basic verifications

Once the tarball is done and uploaded, the release manager is asked to make basic verifications, via Jenkins, if the
release has been correctly created.

At this link you’ll find some Jenkins Jobs ready to be started. Please start the following Jenkins jobs and come back
in about an hour to see the results for all of them.

1. https://lhcb-jenkins.cern.ch/jenkins/view/LHCbDIRAC/job/!RELEASE!__pylint_unit/ the !RELEASE! is the
actual relase for example: https://lhcb-jenkins.cern.ch/jenkins/view/LHCbDIRAC/job/v8r5__pylint_unit/

This job will: run pylint (errors only), run all the unit tests found in the system, assess the coverage. The job should
be considered successful if:

• the pylint error report didn’t increase from the previous job run

• the test results didn’t get worse from the previous job run

• the coverage didn’t drop from the previous job run

2. https://lhcb-jenkins.cern.ch/jenkins/view/LHCbDIRAC/job/!RELEASE!__pilot/

This job will simply install the pilot. Please just check if the result does not show in an “unstable” status

3. https://lhcb-jenkins.cern.ch/jenkins/view/LHCbDIRAC/job/!RELEASE!__/

TODO

10 Chapter 2. Administrator Guide

https://lhcb-jenkins.cern.ch/jenkins/view/LHCbDIRAC/
https://lhcb-jenkins.cern.ch/jenkins/view/LHCbDIRAC/job/!RELEASE!__pylint_unit/
https://lhcb-jenkins.cern.ch/jenkins/view/LHCbDIRAC/job/v8r5__pylint_unit/
https://lhcb-jenkins.cern.ch/jenkins/view/LHCbDIRAC/job/!RELEASE!__pilot/
https://lhcb-jenkins.cern.ch/jenkins/view/LHCbDIRAC/job/!RELEASE!__/

LHCbDIRAC Documentation, Release v7

2.1.4 3. Advertise the new release

Before you start the release you must write an Elog entry 1 hour before you start the deployment. You have to
select Production and Release tick boxes. When the intervention is over you must notify the users (reply to the Elog
message).

2.1.5 4. Deploying the release

Deploying a release means deploying it for the various installations:

* client

* server

* pilot

release for client

Please refer to this TWIKI page a quick test to validate the installation is to run the SHELL script $LHCBRE-
LEASE/LHCBDIRAC/LHCBDIRAC_vXrY/LHCbDiracSys/test/client_test.csh

go to this web page for asking to install the client release in AFS and CVMFS:

• in the field “Project list” put : “Dirac vNrMpK LHCbGrid vArB LHCbDirac vArBpC” (NOTE: LHCbGrid
version can be found: https://gitlab.cern.ch/lhcb-dirac/LHCbDIRAC/blob/master/dist-tools/projectConfig.json)

• in the field “platforms” put : “x86_64-slc6-gcc48-opt x86_64-slc6-gcc49-opt x86_64-slc6-gcc62-opt x86_64-
centos7-gcc62-opt”

Then click on the “BUILD” button

• within 10-15 min the build should start to appear in the nightlies page https://lhcb-nightlies.cern.ch/release/

• if there is a problem in the build, it can be re-started via the dedicated button (it will not restart by itself after a
retag)

• The build for gcc48 is known to have missing dependencies, but must be released anyway.

If it is the production release, and only in this case, once satisfied by the build, take note of the build id (you can use
the direct link icon) and make the request via https://sft.its.cern.ch/jira/browse/LHCBDEP.

• NOTE: If some package is already released, please do not indicate in the Jira task. For example: a Jira task when:

– DIRAC is not released, then the message in the JIRA task: Summary:Dirac v6r14p37 and LHCbDirac
v8r2p50; Description: Please release Dirac and LHCbDirac in this order based on build 1526;

– DIRAC is released, then the message in the JIRA task: Summary:LHCbDirac v8r2p50; Description: Please release LHCbDirac based on build 1526;

* Dependency is not fulfilled for the platform: x86_64-slc6-gcc48-opt please ask to force the
release using –no-strict option

Once the client has been deployed, you should setup the correct environment (lb-run LHCbDIRAC/<version> bash –norc), preferably on a CERNVM, on lxplus otherwise, and run the following two scripts:

• Minimal test: https://gitlab.cern.ch/lhcb-dirac/LHCbDIRAC/blob/master/tests/System/Client/
basic-imports.py

• Bigger (certification like) test: https://gitlab.cern.ch/lhcb-dirac/LHCbDIRAC/blob/master/tests/System/
Client/client_test.sh

2.1. LHCbDIRAC Releases 11

https://twiki.cern.ch/twiki/bin/view/LHCb/ProjectRelease#LHCbDirac
https://jenkins-lhcb-nightlies.web.cern.ch/job/nightly-builds/job/release/build/
https://gitlab.cern.ch/lhcb-dirac/LHCbDIRAC/blob/master/dist-tools/projectConfig.json
https://lhcb-nightlies.cern.ch/release/
https://sft.its.cern.ch/jira/browse/LHCBDEP
https://gitlab.cern.ch/lhcb-dirac/LHCbDIRAC/blob/master/tests/System/Client/basic-imports.py
https://gitlab.cern.ch/lhcb-dirac/LHCbDIRAC/blob/master/tests/System/Client/basic-imports.py
https://gitlab.cern.ch/lhcb-dirac/LHCbDIRAC/blob/master/tests/System/Client/client_test.sh
https://gitlab.cern.ch/lhcb-dirac/LHCbDIRAC/blob/master/tests/System/Client/client_test.sh

LHCbDIRAC Documentation, Release v7

Changing the prod version for Pilot

ask the CVMFS librarians to change the prod version for the pilot on cvmfs. The commands for changing the prod:

cd /cvmfs/lhcb.cern.ch/lib/lhcb/LHCBDIRAC
rm LHCBDIRAC_prod; ln -s LHCBDIRAC_vArBpC LHCBDIRAC_prod

Server

To install it on the VOBOXes from lxplus:

lhcb-proxy-init -g diracAdmin
dirac-admin-sysadmin-cli --host volhcbXX.cern.ch
>update LHCbDIRAC-v8r3p32
>restart *

The (better) alternative is using the web portal or using the following script: https://gitlab.cern.ch/lhcb-dirac/
LHCbDIRAC/blob/devel/dist-tools/create_vobox_update.py

The recommended way is the following:

ssh lxplus
mkdir DiracInstall; cd DiracInstall
wget https://gitlab.cern.ch/lhcb-dirac/LHCbDIRAC/blob/devel/dist-tools/create_vobox_
→˓update.py
python create_vobox_update.py vArBpC

This command will create 6 files called “vobox_update_MyLetter” then you can run in 6 windows the recipe for one
single machine like that:

ssh lxplus
cd DiracInstall ; lb-run LHCbDIRAC/prod bash -norc ; lhcb-proxy-init -g lhcb_admin;
→˓dirac-admin-sysadmin-cli
and from the prompt ::

[host] : execfile vobox_update_MyLetter
[host] : quit

Note:

It is normal if you see the following errors:

–> Executing restart Framework SystemAdministrator [ERROR] Exception while reading from peer: (-1,
‘Unexpected EOF’)

In case of failure you have to update the machine by hand. Example of a typical failure:

--> Executing update v8r2p42
Software update can take a while, please wait ...
[ERROR] Failed to update the software
Timeout (240 seconds) for '['dirac-install', '-r', 'v8r2p42', '-t', 'server', '-e',
→˓'LHCb', '-e', 'LHCb', '/opt/dirac/etc/dirac.cfg']' call

Login to the failing machine, become dirac, execute manually the update, and restart everything. For example:

ssh lbvobox11
sudo su - dirac
dirac-install -r v8r2p42 -t server -e LHCb -e LHCb /opt/dirac/etc/dirac.cfg

(continues on next page)

12 Chapter 2. Administrator Guide

https://gitlab.cern.ch/lhcb-dirac/LHCbDIRAC/blob/devel/dist-tools/create_vobox_update.py
https://gitlab.cern.ch/lhcb-dirac/LHCbDIRAC/blob/devel/dist-tools/create_vobox_update.py

LHCbDIRAC Documentation, Release v7

(continued from previous page)

lhcb-restart-agent-service
runsvctrl t startup/Framework_SystemAdministrator/

Specify that this error can be ignored (but should be fixed !):

2016-05-17 12:00:00 UTC dirac-install [ERROR] Requirements installation script /opt/
→˓dirac/versions/v8r2p42_1463486162/scripts/dirac-externals-requirements failed.
→˓Check /opt/dirac/versions/v8r2p42_1463486162/scripts/dirac-externals-requirements.
→˓err

Using the web portal:

• You cannot do all the machines at once. Select a bunch of them (between 5 and 10). Fill in the version
number and click update.

• Repeate until you have them all.

• Start again selecting them by block, but this time, click on “restart” to restart the components.

WebPortal

When the web portal machine is updated then you have to compile the WebApp:

ssh lhcb-portal-dirac.cern.ch
sudo su - dirac
dirac-install -r VERSIONTOBEINSTALLED -t server -l LHCb -e LHCb,LHCbWeb,WebAppDIRAC /
→˓opt/dirac/etc/dirac.cfg (for example: dirac-install -r v8r4p2 -t server -l LHCb -e
→˓LHCb,LHCbWeb,WebAppDIRAC /opt/dirac/etc/dirac.cfg)
dirac-webapp-compile

When the compilation is finished:

lhcb-restart-agent-service
runsvctrl t startup/Framework_SystemAdministrator/

TODO

When the machines are updated, then you have to go through all the components and check the errors. There are two possibilities:

1. Use the Web portal (SystemAdministrator)

2. Command line:

for h in $(grep ‘set host’ vobox_update_* | awk {‘print $NF’}); do echo “show errors” | dirac-admin-
sysadmin-cli -H $h; done | less

Pilot

Use the following script (from, e.g., lxplus after having run lb-run LHCbDIRAC tcsh):

dirac-pilot-version -S v8r2p42

2.1. LHCbDIRAC Releases 13

LHCbDIRAC Documentation, Release v7

NOTE: YOU HAVE TO KEEP TWO PILOT VERSION. AFTER YOU EXECUTED THIS COMMAND PLEASE
MODIFY THE CS! for example:/Operation/LHCb-Production/Pilot/Version to v8r2p42, v8r241 The newer version
should be the first in the list

for checking and updating the pilot version. Note that you’ll need a proxy that can write in the CS (i.e. lhcb-admin).
This script will make sure that the pilot version is update BOTH in the CS and in the json file used by pilots started in
the vacuum.

Basic instruction how to merging the devel branch into master (NOT for PATCH release)

Our developer model is to keep only two branches: master and devel. When we made a major release we have to
merge devel to master. Before the merging please create a new branch based on master using the web interface of
GitLab. This is for safety. After you can merege devel to master:

mkdir $(date +20%y%m%d) && cd $(date +20%y%m%d)
git clone ssh://git@gitlab.cern.ch:7999/lhcb-dirac/LHCbDIRAC.git
cd LHCbDIRAC
git remote rename origin upstream
git fetch upstream
git checkout -b newMaster upstream/master
git merge upstream/devel
git push upstream newMaster:master

2.1.6 5. Mesos cluster

Mesos is currently only used for the certification. In order to push a new version on the Mesos cluster, 3 steps are
needed:

• Build the new image

• Push it the lhcbdirac gitlab repository

• Update the version of the running containers

Automatic procedure

The first two steps should be automatically done by the gitlab-ci of the LHCbDIRAC repository. The last step will be
taken care of by the gitlab-ci of the MesosClusterConf repository (https://gitlab.cern.ch/lhcb-dirac/MesosClusterConf)
For a simple version upgrade, edit directly on the gitlab web page the file clusterConfiguration.json and replace the
“version” attribute with what you want. Of course add a meaningful commit message.

Manual procedure

This should in principle not happen. Remember that any manual change of the mesos cluster will be erased next time
the gitlab-ci of the MesosClusterConf repository will run. However, you can do all the above step manually.

All these functionalities have been wrapped up in a script (dirac-docker-mgmt), available on all the lbmesosadm*
machines (01, 02)

The next steps are the following:

build the new image
this will download the necessary files, and build
the image localy

(continues on next page)

14 Chapter 2. Administrator Guide

https://gitlab.cern.ch/lhcb-dirac/MesosClusterConf

LHCbDIRAC Documentation, Release v7

(continued from previous page)

dirac-docker-mgmt.py -v v8r5 --build

Push it to the remote lhcbdirac registry
Your credentials for gitlab will be asked
dirac-docker-mgmt.py -v v8r5 --release

Update the version of the running containers
The services and number of instances running
will be preserved
dirac-docker-mgmt.py -v v8r5 --deploy

2.2 Renewal of certificate for ONLINE machine

Login as lhcbprod on lbdirac.cern.ch and generate the certificate request

openssl req -new -subj /CN=lbdirac.cern.ch -out newcsr.csr -nodes -sha1

Open in your browser the page http://ca.cern.ch cut the content of newcsr.csr (created in the previous step) in the web
page and click on the submit button. Save the Base 64 encoded certificate as a file newcert.cer. Copy this file to
lbdirac.cern.ch. Then convert the certificate in the correct format.

openssl pkcs12 -export -inkey privkey.pem -in newcert.cer -out myCertificate.pks (You
→˓will have to type the PEM password you typed in the previous step. Type also an
→˓export password, and don't forget it. Your certificate in PKCS12 format is ready in
→˓file myCertificate.pks, you can delete the other files.)
openssl pkcs12 -in myCertificate.pks -clcerts -nokeys -out hostcert.pem
openssl pkcs12 -in myCertificate.pks -nocerts -out hostkey.pem.passwd
openssl rsa -in hostkey.pem.passwd -out hostkey.pem (remove the password)

If you want to test that the new host certificate is valid without any password, just do

dirac-proxy-init -C <cert> -K <key>

2.3 ONLINE steps

2.3.1 Installation of LHCbDirac

The machine running the transfers from the pit is lbdirac, and is in the online network. This machine runs:

• A complete RMS: ReqManager (url: RequestManagement/onlineGateway), a ReqProxy (known only from in-
side) and a RequestExecutingAgent

• The RAWIntegrity system: the RAWIntegrityHandler and RAWIntegrityAgent

A special catalog is defined in the local configuration in order to keep track of the files transfered:

RAWIntegrity
{

AccessType = Read-Write
Status = Active

}

2.2. Renewal of certificate for ONLINE machine 15

http://ca.cern.ch

LHCbDIRAC Documentation, Release v7

We also have two special configuration for StorageElements:

Setting it to NULL to transfer without
checking the checksum, since it is already done by
the DataMover and the RAWIntegrityAgent
It should avoid the double read on the local disk
ChecksumType=NULL
Setting this to True is dangerous...
If we have a SRM_FILE_BUSY, we remove the file
But we have enough safety net for the transfers from the pit
SRMBusyFilesExist = True

Finally, you need to overwrite the URLS of the RMS to make sure that they use the internal RMS:

URLs
{

ReqManager = dips://lbdirac.cern.ch:9140/RequestManagement/ReqManager
ReqProxyURLs = dips://lbdirac.cern.ch:9161/RequestManagement/ReqProxy

}

2.3.2 Workflow

The DataMover is the Online code responsible for the interraction with the BKK (register the run, the files, set the
replica flag), to request the physical transfers, and to remove the file of the Online storage when properly transfered.

The doc is visible here: https://lbdokuwiki.cern.ch/online_user:rundb_onlinetoofflinedataflow

The DataMover registers the Run and the files it already knows about in the BKK. Then it creates for each file a request
with a PutAndRegister operation. The target SE is CERN-RAW, the Catalog is RAWIntegrity. The RequestExecutin-
gAgent will execute the copy from the local online storage to CERN-RAW, and register it in the RAWIntegrity DB.

The RAWIntegrityAgent looks at all the files in the DB that are in status ‘Active’.

For each of them, it will check if the file is already on tape, and if so, compare the checksum.

If the checksum is incorrect, the file remains in status ‘Active’, and will require manual intervention. If the checksum
is correct, we attempt to register the file in the DFC only.

If the registration fails, the file goes into ‘Copied’ status in the DB, c If the registration works, we attempt to remove
the file from the Online storage. This removal Request sends a signal to the DataMover, which will mark the file for
removal (garbage collection), and the replica flag to yes in the BKK.

If the removal fails, the file status is set to ‘Registered’ in the DB, and will be reattempted from there at the next loop.
If the removal works, the file is set to ‘Done’ in the DB.

2.4 Data distribution

2.4.1 Archive

The defautl option is at Operations/<Setup>/TransformationPlugins/Archive2SEs. it can be overwritten in each plu-
gin. The choice is done randomly.

2.4.2 DST broadcast

The broadcast done by LHCbDSTBroadcast plugin is done according to the free space

16 Chapter 2. Administrator Guide

https://lbdokuwiki.cern.ch/online_user:rundb_onlinetoofflinedataflow

LHCbDIRAC Documentation, Release v7

2.5 RAW files processing and distribution

The RAW files all have a copy at CERN, and are then distributed across the Tier1. The processing is shared between
CERN and the Tier1.

The selection of the site for copying the data and the site where the data will be processed (so called RunDestination)
is done by the RAWReplication plugin. To do so, it uses shares that are defined in Operations/<Setup>/Shares

2.5.1 Selection of a Tier1 for the data distribution

The quota are defined in Operations/<Setup>/Shares/RAW.

Since CERN has a copy of every file, it does not appear in the quota.

In practice, the absolute values are meaningless, what matters is their relative values. The total is normalized to a 100
in the code.

When choosing where a run will be copied, we look at the current status of the distribution, based on the run duration.
The site which is the furthest from its objectives is selected.

2.5.2 Selection of a Tier1 for the data processing

Once a Tier1 has been selected to copy the RAW file, one needs to select a site where the data will be processed: either
CERN or the Tier1 where the data is: the RunDestination. Note that the destination is chosen per Run, and will stay
as is: all the production will process the run at the same location.

This is done using Operations/<Setup>/Shares/CPUforRAW. There, the values are independent: they should be be-
tween 0 and 1, and represents the fraction of data it will process compared to CERN. So if the value is 0.8, it means
80% of the data copied to that site will be processed at that site, and the 20 other percent at CERN.

This share is used by the processing plugin DataProcessing. The equivalent exists when reprocessing (plugin DataRe-
processing): Operations/<Setup>/Shares/CPUforReprocessing

2.5.3 Change of values in the shares

Note: if a change is to be made after a transformation has already distributed a lot of files, it is better to start a new
transformation.

The principle goes as follow, but is obviously better done with an Excel sheet.

From Rebus (https://gstat-wlcg.cern.ch/apps/pledges/resources/), we take for each T1 the CPUPledge (in MHS06) and
the TapePledge (PB). We deduce easily the CPUPledgePercent and TapePledgePercent.

From the StorageUsageSummary, we get the CurrentTapeUsage (e.g. dirac-dms-storage-usage-summary –LCG –Site
LCG.CERN.cern)

We then have:

AdditionalTape = TapePledge - CurrentTape

From which we deduce AdditionalTapePercent.

We then compute the ratio:

CPU / NewTape = CPUPledgePercent / AdditionalTapePercent

2.5. RAW files processing and distribution 17

https://gstat-wlcg.cern.ch/apps/pledges/resources/

LHCbDIRAC Documentation, Release v7

It represents the increase of CPU pledge vs the increase of Tape with respect to the total.

We then chose a certain percentage of data which is going to be processed at CERN. Say 20%. We then get:

CPUShare = CPUPledgePercent*(1-0.2)

The next step is to assign a CPUFraction (in [0:1]) by hand following this guideline: the lower the CPU/Tape ratio, the
lower the fraction processed “locally”.

The final step is to compute:

RAWShare = CPUShare/CPUFraction

It represents the percentage of data to be copied to the given T1.

Obviously, since we have an extra constraint, we have to give a degree of freedom. We normally give it to RAL with
the following:

RALRAWShare = 100% - Sum(OtherShares)
RALCPUFraction = RALCpuShare / RALRAWShare

CPUShare corresponds to Operations/<Setup>/Shares/CPUforRAW

RAWShare corresponds to Operations/<Setup>/Shares/RAW

2.6 Productions flushing

2.6.1 Flushing a transformation

Transformations normally have grouping factors: total size of the input files, number of files, etc. There are cases when
the grouping conditions cannot be reached, for example if there are not enough files in the run to reach the threshold
defined. In that case, the transformation can be flushed, meaning create tasks anyway with whatever is there.

The flushing is a manual operation that only has an impact on the files present at the moment of triggering it, meaning
that if new files arrive later, they will accumulate again: a transformation does not stay in “flush mode”.

2.6.2 Flushing a run in a transformation

Many transformations have a grouping by Run on top of a running by size/files. The same as described previously
can happen: within a given run, the grouping conditions cannot be reached. In that case, it is possible to flush the run.
There are two major differences compared to flushing a transformation:

1. Flushing a run is definitive

2. The procedure can be automatic

1. Flushing a run is definitive

Once a run is set to flush, it will stay in this state. This means that if new files arrive after flushing the run, they will not
be accumulated, and a new task will be create for each and every file that arrives. This is not what you want normally.

18 Chapter 2. Administrator Guide

LHCbDIRAC Documentation, Release v7

2. Automatic run flushing for Merging

The principle always consists in going back to the RAW files of a run, and making sure that all of them have descen-
dants in the current production. In practice, we count the number of RAW ancestors of the files in the production, and
compare it with the number of RAW files declared in the BKK. These two numbers must match. This count is done
by stream.

The only runs that are considered for flushing are the runs marked as ‘finished’ in the bookkeeping.

However, it might happen that a run does not get flushed. This normally shows an issue at the Stripping level. Consider
the following example, with a Run that contains 3 raw files:

RAW file RDST file Stripping output
A.RAW A.RDST A.stream1, A.stream2, A.stream3
B.RAW B.RDST B.stream2, B.stream3, B.stream4
C.RAW C.RDST C.stream3, c.stream4

So, when looking at the ancestors per stream, we find:

Stream Nb of RAW ancestors
stream1 1
stream2 2
stream3 3
stream4 2

In that case, the flushing of the run will be triggered by stream3, since it finds the 3 ancestors. However, if in the
stripping production, one file is never stripped because problematic, no stream will ever have all the raw files as
ancestors, and the run will never be flushed. Hence, the run status in the merging is a good way to check the stripping
:-)

Note that the script transformation-debug is more clever that the plugin, and can warn of such situations.

2.6. Productions flushing 19

LHCbDIRAC Documentation, Release v7

20 Chapter 2. Administrator Guide

CHAPTER 3

Certification

3.1 LHCbDIRAC Certification (development) Releases

The following procedure applies to pre-releases (AKA certification releases) and it is a simpler version of what applies
to production releases.

This page details the duty of the release manager. The certification manager duties are detailed in the next page.

3.1.1 What for

The release manager of LHCbDIRAC has the role of:

1. creating the pre-release

2. making basic tests

3. deploying it in the certification setup

The certification manager would then follow-up on this by: 4. making even more tests

And, after several iterations of the above, before: 5. merging in the production branch

Points 4 and 5 won’t anyway be part of this first document.

3.1.2 1. Creating the release

Unless otherwise specified, certification releases of LHCbDIRAC are done “on top” of the latest pre-release of DIRAC.
The following of this guide assumes the above is true.

Creating a pre-release of LHCbDIRAC means creating a tarball that contains the code to certify. This is done in 2
steps:

1. Merging “Merge Requests”

2. Creating the release tarball, add uploading it to the LHCb web service

21

LHCbDIRAC Documentation, Release v7

But before:

Pre

If you use a version of git prior to 1.8, remove teh option –pretty in the command line

Verify what is the last tag of DIRAC:

it should be in this list:
git describe --tags $(git rev-list --tags --max-count=10)

A tarball containing it is should be already uploaded here

You may also look inside the .cfg file for the DIRAC release you’re looking for: it will contain an “Externals” version
number, that should also be a tarball uploaded in the same location as above.

If all the above is ok, we can start creating the LHCbDIRAC pre-release.

Merging “Merge Requests”

Merge Requests (MR) that are targeted to the devel branch and that have been approved by a reviewer are ready to be
merged

If there are no MRs, or none ready: please skip to the “update the CHANGELOG” subsection.

Otherwise, simply click the “Accept merge request” button for each of them.

Then, from the LHCbDIRAC local fork you need to update some files:

if you start from scratch otherwise skip the first 2 commands
mkdir $(date +20%y%m%d) && cd $(date +20%y%m%d)
git clone https://:@gitlab.cern.ch:8443/lhcb-dirac/LHCbDIRAC.git
git remote add upstream https://:@gitlab.cern.ch:8443/lhcb-dirac/LHCbDIRAC.git
update your "local" upstream/master branch
git fetch upstream
create a "newDevel" branch which from the upstream/devel branch
git checkout -b newDevel upstream/devel
determine the tag you're going to create by checking what was the last one from the
→˓following list (add 1 to the "p"):
git describe --tags $(git rev-list --tags --max-count=5)
Update the version in the __init__ file:
vim LHCbDIRAC/__init__.py
Update the version in the releases.cfg file:
vim LHCbDIRAC/releases.cfg
For updating the CHANGELOG, get what's changed since the last tag
#please use the proper LHCbDIRAC tag; replace v8r2p46
git log --pretty=oneline ${t}..HEAD | grep -Ev "($(git log --pretty=oneline ${t}..
→˓v8r2p46 | awk {'print $1'} | tr '\n' '|')BOOM)"
copy the output, add it to the CHANGELOG (please also add the DIRAC version)
vim CHANGELOG # please, remove comments like "fix" or "pylint" or "typo"...
#If needed, change the versions of the packages
vim dist-tools/projectConfig.json
Commit in your local newDevel branch the 3 files you modified
git add -A && git commit -av -m "<YourNewTag>"

Time to tag and push:

22 Chapter 3. Certification

http://lhcbproject.web.cern.ch/lhcbproject/dist/Dirac_project/installSource/
https://gitlab.cern.ch/lhcb-dirac/LHCbDIRAC/merge_requests

LHCbDIRAC Documentation, Release v7

make the tag
git tag -a <YourNewTag> -m <YourNewTag>
push "newDevel" to upstream/devel
git push --tags upstream newDevel:devel
delete your local newDevel
git branch -d newDevel

Remember: you can use “git status” at any point in time to make sure what’s the current status.

Creating the release tarball, add uploading it to the LHCb web service

Login on lxplus, run

lb-run LHCbDirac/prod bash -norc
git archive --remote ssh://git@gitlab.cern.ch:7999/lhcb-dirac/LHCbDIRAC.git devel
→˓LHCbDIRAC/releases.cfg | tar -x -v -f - --transform 's|^LHCbDIRAC/||' LHCbDIRAC/
→˓releases.cfg
dirac-distribution -r v8r4-pre1 -l LHCb -C file:///`pwd`/releases.cfg (this may take
→˓some time)

Don’t forget to read the last line of the previous command to copy the generated files at the right place. The format is
something like:

(cd /tmp/joel/tmpxg8UuvDiracDist ; tar -cf - *.tar.gz *.md5 *.cfg) | ssh
→˓$USER@lxplus.cern.ch 'cd /afs/cern.ch/lhcb/distribution/DIRAC3/tars && tar -xvf - &
→˓& ls *.tar.gz > tars.list'

And just copy/paste/execute it.

3.1.3 2. Making basic verifications

Once the tarball is done and uploaded, the release manager is asked to make basic verifications, via Jenkins, if the
release has been correctly created.

The tests may vary, but are announced on the Trello board, and on the Slack channel ‘lhcb-certification’ of the ‘lhcb-
dirac’ team.

3.1.4 3. Deploying the release

Deploying a release means deploying it for some installation:

* client

* server

* pilot

release for client

Please refer to this TWIKI page a quick test to validate the installation is to run the SHELL script $LHCBRE-
LEASE/LHCBDIRAC/LHCBDIRAC_vXrY/LHCbDiracSys/test/client_test.csh

go to https://jenkins-lhcb-nightlies.web.cern.ch/job/nightly-builds/job/release/build page for asking to install the client
release in AFS and CVMFS:

3.1. LHCbDIRAC Certification (development) Releases 23

https://twiki.cern.ch/twiki/bin/view/LHCb/ProjectRelease#LHCbDirac
https://jenkins-lhcb-nightlies.web.cern.ch/job/nightly-builds/job/release/build

LHCbDIRAC Documentation, Release v7

• in the field “Project list” put : “Dirac vNrMpK LHCbGrid vArB LHCbDirac vArBpC ” (LHCbGrid version can
be found: https://gitlab.cern.ch/lhcb-dirac/LHCbDIRAC/blob/devel/dist-tools/projectConfig.json)

• in the field “platforms” put : “x86_64-slc6-gcc48-opt x86_64-slc6-gcc49-opt x86_64-slc6-gcc62-opt x86_64-
centos7-gcc62-opt”

Then click on the “BUILD” button

• within 10-15 min the build should start to appear in the nightlies page https://lhcb-nightlies.cern.ch/release/

• if there is a problem in the build, it can be re-started via the dedicated button (it will not restart by itself after a
retag)

When the release is finished https://lhcb-nightlies.cern.ch/release/, you can deploy to the client to afs dev area or prod.

prod area

If you want to deploy this release to production release area, you have to create a JIRA task and make the request via
https://sft.its.cern.ch/jira/browse/LHCBDEP.

• NOTE: If some package is already released, please do not indicate in the Jira task. For example: a Jira task when:

– DIRAC is not released, then the message in the JIRA task: Summary:Dirac v6r14p37 and LHCbDirac
v8r2p50; Description: Please release Dirac and LHCbDirac in this order based on build 1526;

– DIRAC is released, then the message in the JIRA task: Summary:LHCbDirac v8r2p50; Description:
Please release LHCbDirac based on build 1526;

afs deve area

Note: Please execute the following commands sequentially.

The following commands used to prepare the RPMs:

ssh lhcb-archive
export build_id=1520
lb-release-rpm /data/artifacts/release/lhcb-release/$build_id
lb-release-rpm --copy /data/artifacts/release/lhcb-release/$build_id

If the rmps are created, you can deploy the release (Do not execute parallel the following commands):

ssh lxplus
cd /afs/cern.ch/lhcb/software/lhcb_rpm_dev
export MYSITEROOT=/afs/cern.ch/lhcb/software/lhcb_rpm_dev
export MyProject=Dirac
export MyVersion=vArBpC
./lbpkr rpm -- -ivh --nodeps /afs/cern.ch/lhcb/distribution/rpm/lhcb/${MyProject^^}_$
→˓{MyVersion}*
export MyProject=LHCbDirac
export MyVersion=vArB-preC
./lbpkr rpm -- -ivh --nodeps /afs/cern.ch/lhcb/distribution/rpm/lhcb/${MyProject^^}_$
→˓{MyVersion}*

Server

To install it on the VOBOXes (certification only) from lxplus:

24 Chapter 3. Certification

https://gitlab.cern.ch/lhcb-dirac/LHCbDIRAC/blob/devel/dist-tools/projectConfig.json
https://lhcb-nightlies.cern.ch/release/
https://lhcb-nightlies.cern.ch/release/
https://sft.its.cern.ch/jira/browse/LHCBDEP

LHCbDIRAC Documentation, Release v7

lhcb-proxy-init -g diracAdmin
dirac-admin-sysadmin-cli --host volhcbXX.cern.ch
>update LHCbDIRAC-v8r4-pre1
>restart *

The (better) alternative is using the web portal.

Pilot

Use the following script (from, e.g., lxplus after having run lb-run –dev LHCbDIRAC bash):

dirac-pilot-version

for checking and updating the pilot version. Note that you’ll need a proxy that can write in the CS (i.e. lhcb-admin).
This script will make sure that the pilot version is update BOTH in the CS and in the json file used by pilots started in
the vacuum. The command to update is

dirac-pilot-version -S v8r4-pre1

Make sure that you are in the certification setup (e.g. check the content of your .dirac.cfg file)

3.2 The certification process

Certifying a release is a process. There are a number of steps to make to reach the point in which we can finally say
that a release is at production level. Within LHCbDirac, we are trying to streamline and automatize this process as
much as possible. Even with that, some tests still require manual intervention. We can split the process in a series of
incremental tests.

Within the following sections we describe, step by step, all the actions needed.

The whole certification process varies from release to release. The list of things to do is maintained in trello boards.

3.2.1 Unit test

When a new release candidate is created from the devel branch, we first run pylint on the whole codebase, and all the
unit tests. Jenkins automizes this for us.

3.2.2 Integration and Regression tests

Run by Jenkins.

3.2.3 System tests

Even if it should not be considered strictly as a test, running all the agents and service within certification is an action
to take. Agents and services spits errors and exceptions. While the second are obviously bugs, the first are not to be
considered bugs until an expert look. Nonetheless, we have created a tool to easily identify all new exceptions and
errors:

3.2. The certification process 25

LHCbDIRAC Documentation, Release v7

codeLocation=https://gitlab.cern.ch/lhcb-dirac/LHCbDIRAC/raw/devel/tests/System/
→˓LogsParser/
mkdir /tmp/logTest
cd /tmp/logTest
wget -r -np -nH --cut-dirs=7 $codeLocation
/bin/bash logParser.sh

For testing that the RMS works, there is an ad-hoc test:

wget http://github.com/DIRACGrid/DIRAC/blob/integration/DataManagementSystem/test/
→˓IntegrationFCT.py
python IntegrationFCT.py lhcb_user CERN-USER RAL-USER CNAF-USER
python IntegrationFCT.py lhcb_prod CERN-FAILOVER RAL-FAILOVER CNAF-FALIOVER

Those commands will create and put to the Request Management System two new requests:

1. for lhcb_user group, which should be banned from using the FTS system

2. for lhcb_prod or lhcb_prmgr group, which this should be executed using FTS

You could monitor their execution using Request monitor web page or by using CLI comamnd:

dirac-rms-show-request test<userName>-<userGroup>

The execution itself will take a while, but at the end both requests statuses should be set to ‘Done’.

Another test, again for the RMS, combined with FTS, is to simply use the following standard DIRAC scripts:

dirac-dms-create-replication-request CNAF_MC-DST /lhcb/certification/test/ALLSTREAMS.
→˓DST/00000751/0000/00000751_00000014_1.allstreams.dst

Which will actually schedule the replication of such file using FTS. This will print an ID that can be used for the script

dirac-rms-show-request ID

That should show how the request goes (quickly) in status “Scheduled”, and then “Done”.

The following script, instead, will remove the copy just created.

dirac-dms-create-removal-request CNAF_MC-DST /lhcb/certification/test/ALLSTREAMS.DST/
→˓00000751/0000/00000751_00000014_1.allstreams.dst

Again, monitoring is available as above.

For testing the replications and removals, use the following:

dirac-dms-add-replication --BKQuery=/validation/MC11a/Beam3500GeV-2011-MagDown-Nu2-
→˓EmNoCuts/Sim05/Trig0x40760037Flagged/Reco12a/Stripping17Flagged/12463412/ALLSTREAMS.
→˓DST --Plugin=ReplicateDataset --Test

That will just print out how many files can be replicated. If there is at least one file (for this particular query there
should be 35), then you can start it with:

dirac-dms-add-replication --BKQuery=/validation/MC11a/Beam3500GeV-2011-MagDown-Nu2-
→˓EmNoCuts/Sim05/Trig0x40760037Flagged/Reco12a/Stripping17Flagged/12463412/ALLSTREAMS.
→˓DST --Plugin=ReplicateDataset --NumberOfReplicas=2 --SecondarySEs Tier1-DST --Start

You can monitor the advancement using:

26 Chapter 3. Certification

LHCbDIRAC Documentation, Release v7

dirac-dms-replica-stats --BKQuery=/validation/MC11a/Beam3500GeV-2011-MagDown-Nu2-
→˓EmNoCuts/Sim05/Trig0x40760037Flagged/Reco12a/Stripping17Flagged/12463412/ALLSTREAMS.
→˓DST

Which should tell you the replica statistics, something like:

[fstagni@lxplus0032 ~]$ dirac-dms-replica-stats --BKQuery=/validation/MC11a/
→˓Beam3500GeV-2011-MagDown-Nu2-EmNoCuts/Sim05/Trig0x40760037Flagged/Reco12a/
→˓Stripping17Flagged/12463412/ALLSTREAMS.DST
Executing BK query: {'Visible': 'Yes', 'ConfigName': 'validation',
→˓'ConditionDescription': 'Beam3500GeV-2011-MagDown-Nu2-EmNoCuts', 'EventType':
→˓'12463412', 'FileType': 'ALLSTREAMS.DST', 'ConfigVersion': 'MC11a', 'ProcessingPass
→˓': '/Sim05/Trig0x40760037Flagged/Reco12a/Stripping17Flagged', 'SimulationConditions
→˓': 'Beam3500GeV-2011-MagDown-Nu2-EmNoCuts'}

34 files (0.0 TB) in directories:
/lhcb/validation/MC11a/ALLSTREAMS.DST/00000654/0000 34 files
34 files found with replicas

Replica statistics:
0 archives: 0 files
1 archives: 25 files
2 archives: 9 files
0 replicas: 0 files
1 replicas: 0 files
2 replicas: 0 files
3 replicas: 33 files
4 replicas: 0 files
5 replicas: 1 files

SE statistics:
CERN-ARCHIVE: 15 files
CNAF-ARCHIVE: 5 files

GRIDKA-ARCHIVE: 11 files
IN2P3-ARCHIVE: 1 files

RAL-ARCHIVE: 8 files
SARA-ARCHIVE: 3 files

CERN_MC_M-DST: 34 files
CNAF_MC-DST: 4 files

CNAF_MC_M-DST: 8 files
GRIDKA_MC-DST: 1 files

GRIDKA_MC_M-DST: 3 files
IN2P3_MC-DST: 9 files

IN2P3_MC_M-DST: 6 files
PIC_MC-DST: 5 files

PIC_MC_M-DST: 4 files
RAL_MC-DST: 20 files

RAL_MC_M-DST: 6 files
SARA_MC-DST: 3 files

SARA_MC_M-DST: 1 files

Sites statistics:
LCG.CERN.ch: 34 files
LCG.CNAF.it: 12 files

LCG.GRIDKA.de: 4 files
LCG.IN2P3.fr: 15 files

LCG.PIC.es: 9 files

(continues on next page)

3.2. The certification process 27

LHCbDIRAC Documentation, Release v7

(continued from previous page)

LCG.RAL.uk: 26 files
LCG.SARA.nl: 4 files

Later, when you see that at least 2 replicas exist, you can issue

dirac-dms-add-replication --BKQuery=/validation/MC11a/Beam3500GeV-2011-MagDown-Nu2-
→˓EmNoCuts/Sim05/Trig0x40760037Flagged/Reco12a/Stripping17Flagged/12463412/ALLSTREAMS.
→˓DST --Plugin=DeleteReplicas --NumberOfReplicas=1 --Start

3.3 Acceptance test steps

3.3.1 Installation of LHCbDirac

Login to a machine where LHCbDirac is already installed. Set the LHCbDirac environment, get a proxy with admin
rights and launch the sysadmin CLI

lb-run LHCbDirac/prod bash
lhcb-proxy-init -g diracAdmin
dirac-admin-sysadmin-cli

Update the LHCbDirac version and restart all the services

set host volhcbXX.cern.ch
update LHCb-vArBpC
restart *

Change the version of the pilot in the CS. Go to the web portal, login with your certificate and the role diracAdmin.
Click on Systems, Configuration and Manage Remote configuration.

28 Chapter 3. Certification

LHCbDIRAC Documentation, Release v7

The version is in the section /Operations/lhcb/LHCb-Certification/Versions/PilotVersion. Clicks on the PilotVersion
and on change option value. Once you have changed the version number, click on submit. and do not forget to commit
the change.

3.3. Acceptance test steps 29

LHCbDIRAC Documentation, Release v7

So you click on the left column on Commit Configuration

Now you should restart the task queue director

30 Chapter 3. Certification

LHCbDIRAC Documentation, Release v7

cd /opt/dirac/runit
runsvctrl d WorkloadManagement/TaskQueueDirector
runsvctrl u WorkloadManagement/TaskQueueDirector

3.3.2 Production test activity

Open your browser and connect to the certification instance of the LHCbDirac web portal (http://lhcb-cert-dirac.cern.
ch) select the setup LHCb-Certification and load your certificate in the portal. Check that that your role is lhcb_user.
Go to the tab Production and click on the Requests choice

Click on the production which is defined label “template for certification” (nb = 28) and in the menu which appears
select Duplicate

3.3. Acceptance test steps 31

http://lhcb-cert-dirac.cern.ch
http://lhcb-cert-dirac.cern.ch

LHCbDIRAC Documentation, Release v7

You are ask if you want to Clear the processing pass in the copy. Select No. This will keep all the steps which are
pre-defined.

32 Chapter 3. Certification

LHCbDIRAC Documentation, Release v7

The new request is created and you get a number that will appear in the web page.

Click on the new request that you just created the step below and select the edit option

3.3. Acceptance test steps 33

LHCbDIRAC Documentation, Release v7

Then modify all the fields which needs a new value. Once you have finished, submit your request to the production
team.

You have just to approve it.

34 Chapter 3. Certification

LHCbDIRAC Documentation, Release v7

Now you should change your role to become lhcb_tech and lhcb_ppg to validate the request. You click on the new
request and in the menu you choose the option sign

3.3. Acceptance test steps 35

LHCbDIRAC Documentation, Release v7

You can sign or reject the request.

36 Chapter 3. Certification

LHCbDIRAC Documentation, Release v7

Once the request has been accepted by lhcb_ppg and lhcb_tech, the status become accepted. Choose now the role
lhcb_pmgr and click on the request. Then choose the option edit

3.3. Acceptance test steps 37

LHCbDIRAC Documentation, Release v7

You give the correct Event Type and number of Events. Then you click on Generate At this stage you are asked to
choose which template should be used. In our case we will choose “MC_Simulation_run.py” and click on the next
button.

You get now the list of value that you could change before submitting the production. For the certification purpose
you should change the value for “MC configuratioon name” to be certification, the “configuration version” should be
test. Verify which plugin you want to use, the number of event that you want to process, the cputimelimit,. . . Once
you have finished, click on the generate button.

38 Chapter 3. Certification

LHCbDIRAC Documentation, Release v7

After the generation of the production you will get in a new window the production ID and the number of jobs
generated. If you want you can see and save the script which will generate this production by clicking on the script
preview button.

3.3. Acceptance test steps 39

LHCbDIRAC Documentation, Release v7

This is the window of the python script which could be used to generate again the production. To exit thi swindow
click on cancel

40 Chapter 3. Certification

LHCbDIRAC Documentation, Release v7

If you click on the request and you choose production monitor you will be re-direct to the production monitor.

Production monitor with the fresh generated productions.

3.3. Acceptance test steps 41

LHCbDIRAC Documentation, Release v7

dirac-bookkeeping-production-informations 830 -o /DIRAC/Setup=LHCb-Certification

lxplus448] x86_64-slc5-gcc46-opt /afs/cern.ch/user/j/joel> dirac-bookkeeping-
→˓production-informations 830 -o /DIRAC/Setup=LHCb-Certification
Production Info:
Configuration Name: LHCb
Configuration Version: Collision11
Event type: 91000000

StepName: merging MDF
ApplicationName : mergeMDF
ApplicationVersion : None
OptionFiles : None
DDDB : None
CONDDB : None
ExtraPackages :None

Number of Steps 1
Total number of files: 2

LOG:1
RAW:1

Number of events
File Type Number of events Event Type EventInputStat
RAW 30988 91000000 30988
Path: /LHCb/Collision11/Beam3500GeV-VeloClosed-MagDown/Real Data/Merging
/LHCb/Collision11/Beam3500GeV-VeloClosed-MagDown/Real Data/Merging/91000000/RAW

You can then check the produced files:

nsls -l /castor/cern.ch/grid/lhcb/certification/test/ALLSTREAMS.DST/00000225/0000
dirac-dms-lfn-replicas /lhcb/certification/test/ALLSTREAMS.DST/00000225/0000/00000225_
→˓00000001_1.allstreams.dst
dirac-dms-add-replication --Production 259:268 --FileType RADIATIVE.DST --Plugin
→˓LHCbMCDSTBroadcastRandom --Request 30
dirac-dms-add-replication --Production 239 --FileType ALLSTREAMS.DST --Plugin
→˓LHCbMCDSTBroadcastRandom --Request 29
Transformation 273 created
Name: Replication-ALLSTREAMS.DST-239-Request29 , Description:
→˓LHCbMCDSTBroadcastRandom of ALLSTREAMS.DST for productions 239
BK Query: {'FileType': ['ALLSTREAMS.DST'], 'ProductionID': ['239'], 'Visibility': 'Yes
→˓'}
3 files found for that query
Plugin: LHCbMCDSTBroadcastRandom
RequestID: 29
[lxplus433] x86_64-slc5-gcc43-opt /afs/cern.ch/lhcb/software/DEV/LHCBDIRAC/LHCBDIRAC_
→˓v6r0-pre12> dirac-bookkeeping-production-informations 239Production Info::

Configuration Name: certification
Configuration Version: test
Event type: 12143001

StepName: MCMerging10
ApplicationName : LHCb
ApplicationVersion : v31r7
OptionFiles : $STDOPTS/PoolCopy.opts
DDB : head-20101206
CONDDB : sim-20101210-vc-md100
ExtraPackages :None

(continues on next page)

42 Chapter 3. Certification

LHCbDIRAC Documentation, Release v7

(continued from previous page)

Number of Steps 4
Total number of files: 8

LOG:4
ALLSTREAMS.DST:4

Number of events
File Type Number of events Event Type EventInputStat
ALLSTREAMS.DST 540 12143001 540
Path: /certification/test/Beam3500GeV-VeloClosed-MagDown-Nu3/MC10Sim01-
→˓Trig0x002e002aFlagged/Reco08/Stripping12Flagged
/certification/test/Beam3500GeV-VeloClosed-MagDown-Nu3/MC10Sim01-
→˓Trig0x002e002aFlagged/Reco08/Stripping12Flagged/12143001/ALLSTREAMS.DST
dirac-bookkeeping-production-files 239 ALLSTREAMS.DST

FileName
→˓ Size GUID Replica
/lhcb/certification/test/ALLSTREAMS.DST/00000239/0000/00000239_00000044_1.allstreams.
→˓dst 14515993 165DD5A9-1D40-E011-AD80-003048F1E1E0 Yes
/lhcb/certification/test/ALLSTREAMS.DST/00000239/0000/00000239_00000045_1.allstreams.
→˓dst 2971054 988731FC-1C40-E011-AFCD-90E6BA442F3B Yes
/lhcb/certification/test/ALLSTREAMS.DST/00000239/0000/00000239_00000074_1.allstreams.
→˓dst 202748580 E2BAF0A1-A340-E011-BF97-003048F1B834 Yes
/lhcb/certification/test/ALLSTREAMS.DST/00000239/0000/00000239_00000076_1.allstreams.
→˓dst 2804277 F086C525-EB43-E011-96F9-001EC9D8B181 Yes

[lxplus433] x86_64-slc5-gcc43-opt /afs/cern.ch/lhcb/software/DEV/LHCBDIRAC/LHCBDIRAC_
→˓v6r0-pre12> dirac-dms-lfn-replicas /lhcb/certification/test/ALLSTREAMS.DST/00000239/
→˓0000/00000239_00000044_1.allstreams.dst
{'Failed': {},
'Successful': {'/lhcb/certification/test/ALLSTREAMS.DST/00000239/0000/00000239_
→˓00000044_1.allstreams.dst': {'CERN_MC_M-DST': 'srm://srm-lhcb.cern.ch/castor/cern.
→˓ch/grid/lhcb/certification/test/ALLSTREAMS.DST/00000239/0000/00000239_00000044_1.
→˓allstreams.dst'}}}
[lxplus433] x86_64-slc5-gcc43-opt /afs/cern.ch/lhcb/software/DEV/LHCBDIRAC/LHCBDIRAC_
→˓v6r0-pre12> dirac-dms-lfn-replicas /lhcb/certification/test/ALLSTREAMS.DST/00000239/
→˓0000/00000239_00000045_1.allstreams.dst
{'Failed': {},
'Successful': {'/lhcb/certification/test/ALLSTREAMS.DST/00000239/0000/00000239_
→˓00000045_1.allstreams.dst': {'CNAF_MC_M-DST': 'srm://storm-fe-lhcb.cr.cnaf.infn.it/
→˓t1d1/lhcb/certification/test/ALLSTREAMS.DST/00000239/0000/00000239_00000045_1.
→˓allstreams.dst'}}}
[lxplus433] x86_64-slc5-gcc43-opt /afs/cern.ch/lhcb/software/DEV/LHCBDIRAC/LHCBDIRAC_
→˓v6r0-pre12> dirac-dms-lfn-replicas /lhcb/certification/test/ALLSTREAMS.DST/00000239/
→˓0000/00000239_00000074_1.allstreams.dst
{'Failed': {},
'Successful': {'/lhcb/certification/test/ALLSTREAMS.DST/00000239/0000/00000239_
→˓00000074_1.allstreams.dst': {'CERN_MC_M-DST': 'srm://srm-lhcb.cern.ch/castor/cern.
→˓ch/grid/lhcb/certification/test/ALLSTREAMS.DST/00000239/0000/00000239_00000074_1.
→˓allstreams.dst'}}}
[lxplus433] x86_64-slc5-gcc43-opt /afs/cern.ch/lhcb/software/DEV/LHCBDIRAC/LHCBDIRAC_
→˓v6r0-pre12> dirac-dms-lfn-replicas /lhcb/certification/test/ALLSTREAMS.DST/00000239/
→˓0000/00000239_00000076_1.allstreams.dst
{'Failed': {},
'Successful': {'/lhcb/certification/test/ALLSTREAMS.DST/00000239/0000/00000239_
→˓00000076_1.allstreams.dst': {'CNAF_MC_M-DST': 'srm://storm-fe-lhcb.cr.cnaf.infn.it/
→˓t1d1/lhcb/certification/test/ALLSTREAMS.DST/00000239/0000/00000239_00000076_1.
→˓allstreams.dst'}}}

How to enable/disable FTS channel ? To check TFS transfer, look at the log for DataManagement/FTSSubmitAgent

3.3. Acceptance test steps 43

LHCbDIRAC Documentation, Release v7

3.3.3 Specific tests

Every release is somewhat special, and introduce new features that should be tested. It has to be noted that developers
should always participate in the testing of very specific new developments, anyway the certification manager should
look into if these tests have been done.

Within Jira, there is a special board, named ready for integration. that contain tasks marked as “Resolved”, but not yet
“Done”. Dragging tasks from left to right will mark them as “Done”.

So, the certification manager can decide to investigate directly, by submitting tests, if know, or ask the developer to
confirm the task can be closed.

44 Chapter 3. Certification

https://its.cern.ch/jira/secure/RapidBoard.jspa?rapidView=604&view=detail&

CHAPTER 4

Indices and tables

• genindex

• search

45

	Developers Guide
	Guide for developing LHCbDIRAC (and DIRAC, for LHCb developers)
	Developing DIRAC and LHCbDIRAC
	HOW TOs
	Browsing the code running in production
	I developed something, I want it in the next release
	Asking for a LHCbDIRAC patch

	Administrator Guide
	LHCbDIRAC Releases
	Renewal of certificate for ONLINE machine
	ONLINE steps
	Data distribution
	RAW files processing and distribution
	Productions flushing

	Certification
	LHCbDIRAC Certification (development) Releases
	The certification process
	Acceptance test steps

	Indices and tables

